A deformation energy-based model for predicting nucleosome dyads and occupancy.
نویسندگان
چکیده
Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes.
منابع مشابه
Training-free atomistic prediction of nucleosome occupancy.
Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical...
متن کاملSequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy.
Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosom...
متن کاملUbiquitous nucleosome crowding in the yeast genome.
Nucleosomes may undergo a conformational change in which a stretch of DNA peels off the histone octamer surface as a result of thermal fluctuations or interactions with chromatin remodelers. Thus, neighboring nucleosomes may invade each other's territories by DNA unwrapping and translocation, or through initial assembly in partially wrapped states. A recent high-resolution map of distances betw...
متن کاملModeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy
MOTIVATION Understanding the mechanisms that govern nucleosome positioning over genomes in vivo is essential for unraveling the role of chromatin organization in transcriptional regulation. Until now, models for predicting genome-wide nucleosome occupancy have assumed that the DNA associations of neighboring nucleosomes on the genome are independent. We present a new model that relaxes this ind...
متن کاملConditional Random Fields for Predicting and Analyzing Histone Occupancy, Acetylation and Methylation Areas in DNA Sequences
Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancies together with their acetylation and methylation are important modification factors on all nuclear processes involving DNA. There have been recently many studies of mapping these modifications in DNA sequences and of relationship between them and various genetic activities, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016